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Noise is an intrinsic feature of population dynamics and plays a crucial role in oscillations called phase-
forgetting quasicycles by converting damped into sustained oscillations. This function of noise becomes evi-
dent when considering Langevin equations whose deterministic part yields only damped oscillations. We
formulate here a consistent and systematic approach to population dynamics, leading to a Fokker-Planck
equation and the associate Langevin equations in accordance with this conceptual framework, founded on
stochastic lattice-gas models that describe spatially structured predator-prey systems. Langevin equations in the
population densities and predator-prey pair density are derived in two stages. First, a birth-and-death stochastic
process in the space of prey and predator numbers and predator-prey pair number is obtained by a contraction
method that reduces the degrees of freedom. Second, a van Kampen expansion in the inverse of system size is
then performed to get the Fokker-Planck equation. We also study the time correlation function, the asymptotic
behavior of which is used to characterize the transition from the cyclic coexistence of species to the ordinary
coexistence.
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I. INTRODUCTION

Random fluctuations are an inherent feature observed in
populations of biological species �1,2�. The number of spe-
cies individuals fluctuates in time and space. In particular,
fluctuations are observed in populations exhibiting time os-
cillations such as those of a predator-prey system �1–7�. In
this context, an important question arises concerning the role
of noise in a biological system exhibiting cycles. Naively
one might imagine that noise would destroy oscillations. Ac-
tually, in some circumstances quite the contrary happens.
Without noise the oscillations are in fact absent, or at most
they are damped oscillations. The noise plays then a crucial
role by converting the damped into undamped oscillations.
Of course, noise by itself would not produce cycles. There
must be an underlying mechanism resulting from the
predator-prey interactions that yields damped oscillations in
the absence of noise.

This conceptual framework has been conjectured by Bar-
tlett �8� and advanced by Nisbet and Gurney �9�. However, a
precise explanation for the existence of undamped oscilla-
tions was given only more recently by McKane and Newman
�10� by means of a birth-and-death stochastic predator-prey
model. By deriving Langevin equations from this stochastic
predator-prey model, these authors showed that predator and
prey numbers exhibit oscillations that emerge from a reso-
nance effect and vanish when one takes the limit of infinite
number of individuals. The set of differential equations made
up of the deterministic part of the Langevin equations is such
that it predicts only damped oscillations. The noise part con-
verts the damped into undamped oscillations. These ideas
were subsequently extended by Lugo and McKane �11� by
means of stochastic spatial models where each site of a lat-
tice, representing a patch, can have many individuals of ei-
ther species. The derivation of Langevin equations from sto-
chastic models has also been carried out by other authors
�12,13�.

Stochastic models that have been used to study predator-
prey systems may or may not take into account the spatial

structure of the habitat. The nonspatial models usually are
one-step processes or zero-dimensional stochastic processes
called birth-and-death processes �1,2,14,15� described by
few stochastic variables, namely, the numbers of individuals
of each species �10,16–19�. The spatial models can be ar-
ranged into at least two classes. One class �11,20� encom-
passes those stochastic lattice models for which the habitat is
described by a lattice of sites, each site representing a patch
with many individuals. The other class �21–36� comprises
the stochastic lattice-gas models, also called interacting par-
ticle systems �37,38�, for which the habitat is also repre-
sented by a lattice of sites but each site can be occupied by at
most one individual �multiple occupancy is not allowed� de-
scribing the discreteness of individuals. These models are
continuous time Markov processes described by a set of dis-
crete stochastic variables, representing the species individu-
als, residing on the sites of a finite lattice of N sites.

The purpose of this paper is to show that Langevin equa-
tions exhibiting properties in accordance with the framework
mentioned above can also be derived from predator-prey sto-
chastic lattice-gas models �21–36�. Here we focus on a
predator-prey stochastic lattice-gas model introduced by
Satulovsky and Tomé �22� but the approach is general. The
derivation is performed in two stages. In the first stage we
obtain a birth-and-death master equation describing a sto-
chastic dynamics in the space of population numbers. In the
second stage, the Fokker-Planck equation and the associate
Langevin equations are obtained from the birth-and-death
master equation by a 1 /N expansion �1,2,39�, of the type put
forward by van Kampen �14,15�. The expansion we use is
distinct from that used by Lugo and McKane �11� in the
following sense. These authors use an expansion in the in-
verse of the carrying capacity �maximum number of indi-
viduals in a site�. Such an expansion cannot be applied to
stochastic lattice-gas models because site occupancy is re-
stricted to few particles. We instead make an expansion in
the inverse of the system size.

The birth-and-death master equation is here derived from
the stochastic lattice-gas models by the use of a contraction
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method leading to the reduction in the number of degrees of
freedom. This reduction is carried out in two ways. In the
first, the resulting stochastic process described by the birth-
and-death master equation involves the prey and predator
numbers only. In the second, it involves in addition the num-
ber of neighboring predator-prey pairs. The reduction
method we use leads to a continuous description of the
predator-prey system and differs from the method devised by
Mobilia et al. �33� who use the Doi-Peliti formalism to de-
rive from the lattice-gas model a continuous field theoretic
description for a predator-prey system.

The 1 /N expansion, as we shall see, implies that the am-
plitude of the undamped oscillations in the population num-
ber increases as �N, or equivalently the amplitude in the
population density decreases as 1 /�N, a property that has
been observed in the stochastic lattice-gas model studied
here �22� and also in other stochastic lattice-gas models
�24–26�. Oscillations in lattice models with this property are
identified as local oscillations �22,24–26� in contrast to glo-
bal oscillations for which the amplitude of the population
number increases as N so that the amplitude of the popula-
tion density remains the same.

The important property that the amplitude of the oscilla-
tions increases as �N cannot alone be used to distinguish
oscillations from fluctuations because the size of stochastic
fluctuations also increases as �N. The proper way to distin-
guish between them is by means of the time correlation func-
tion. Ordinary stochastic fluctuations have time correlation
functions that decay exponentially with time charactering or-
dinary Brownian noise. Undamped local oscillations, also
called phase-forgetting quasicycles �1,2�, have time correla-
tion functions exhibiting damped oscillations �asymptotically
a damped sinusoidal function�, which we call chromatic
Brownian noise. We remark that global oscillations, not seen
in the present study, and also called phase-remembering qua-
sicycles �1,2�, have time correlation functions that are as-
ymptotically pure sinusoidal.

The aim of this paper is also to characterize the transition
from oscillatory behavior to ordinary behavior, without os-
cillations. This can be done by considering the dominant
eigenvalue of the Jacobian matrix associated to the determin-
istic part of the Langevin equations. The dominant eigen-
value determines the asymptotic behavior of the time corre-
lation functions. If it is real then the time correlation function
decays exponentially characterizing an ordinary noncyclic
behavior. If it is complex than the time correlation function is
a sinusoidal exponentially decaying function characterizing
the undamped cyclic behavior or phase-forgetting quasi-
cycles. The imaginary part of the complex eigenvalue is
identified as the frequency of oscillations. A transition from
one type of behavior to the other may be defined as the point
where the real eigenvalue equals the real part of the complex
eigenvalue. The imaginary part of the dominant eigenvalue
may be considered as an order parameter. Notice that while
this is not a phase transition in the thermodynamic sense, it is
however a real change in the behavior of populations that
can actually be observed.

It is worth mentioning that the stochastic lattice-gas mod-
els and the birth-and-death stochastic processes are ap-
proaches representing two distinct levels of stochastic de-

scription in population dynamics. The former corresponds to
a microscopic description in which the spatial structure is
explicitly taken into account and each individual is repre-
sented by a stochastic variable. The latter corresponds to a
mesoscopic or a coarse grained description in which the spa-
tial structure is neglected and the species individuals are de-
scribed collectively by their numbers that work as stochastic
variables. There is also a third level of description repre-
sented by the deterministic ordinary differential equations in
which noise and the spatial structure are absent and regarded
as mean-field-type theories.

II. STOCHASTIC LATTICE-GAS MODEL

The stochastic lattice-gas model �22� that we consider
here consists of three subprocesses: �a� the autocatalytic cre-
ation of prey, �b� the catalytic creation of a predator and
simultaneous annihilation of prey, and �c� spontaneous anni-
hilation of predators. At each site i of a square lattice there is
a stochastic variable �i that takes the value 0, 1, or 2, accord-
ing to whether the site i is empty, occupied by a prey indi-
vidual, or occupied by a predator. For convenience we use
projector variables pi, ni, and mi that take the values 0 or 1.
If site i is empty, pi=1, otherwise, pi=0; if it is occupied by
a prey individual, ni=1, otherwise, ni=0; and if it is occupied
by a predator, mi=1, otherwise, mi=0. They are related by
pi+ni+mi=1 and satisfy the projection relations pi

2= pi, ni
2

=ni, mi
2=mi and pini=nimi= pimi=0. The transitions allowed

are those in which the state of a site changes in the cycle
order 0→1→2→0. The corresponding transition rate wi���
is given by

wi��� =
a

4
pi�

�

ni+� +
b

4
ni�

�

mi+� + cmi, �1�

where the summations are performed over the nearest neigh-
bor of site i and a, b, and c are parameters related to the
creation of prey, creation of a predator, and annihilation of
predators, respectively.

The time evolution of the probability distribution P�� , t�
at time t of a configuration �= ��i� is governed by the master
equation

d

dt
P��,t� = �

i

�wi��i�P��i,t� − wi���P���� , �2�

where the state denoted by �i is obtained from � by an
anticyclic permutation of the state of site i, that is, 2→1
→0→2. By rescaling time we may assume that a+b+c=1,
with 0�a ,b ,c�1.

For later use we define the variables n=�ini as the prey
number, m=�imi as the predator number, and p=�ipi as the
number of empty sites. They are related by n+m+ p=N,
where N is the number of sites of the lattice. We define also
the variables x=n /N, the prey density, y=m /N, the predator
density, and z= p /N, the density of empty sites. They are
related by x+y+z=1.

III. BIRTH-AND-DEATH STOCHASTIC PROCESS

We start by writing a master equation for the birth-and-
death stochastic process, which gives the time evolution of
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the joint probability P�n ,m , t� of the system having n prey
individuals and m predators. The most general form for a
one-step master equation is

d

dt
P�n,m,t� = N �

�=−1

+1

�
�=−1

+1

�A���n − �,m − ��P�n − �,m − �,t�

− A���n,m�P�n,m,t�� , �3�

where A���n ,m� is the rate of the transition �n ,m�→ �n
+� ,m+��, where the increments � and � can be 0, �1. This
equation is obtained directly from the master Eq. �2� by writ-
ing P�n ,m , t� in place of P�� , t�, a procedure that results in
the following relations between the transitions rates A�� and
the microscopic transition rate wi,

A+0 = 		piwi

 = au , �4�

A−+ = 		niwi

 = bv , �5�

A0− = 		miwi

 = cy , �6�

where the notation 		f i

 does not mean an average in prob-
ability but merely stands for �1 /N��i f i. The quantities u and
v are defined by

u =
1

4�
�

		pini+�

, v =
1

4�
�

		nimi+�

 �7�

and are the density of prey individuals next to an empty site
and the density of predators next to a prey individual, respec-
tively. The other transition rates vanish.

As it stands Eq. �3� is not a closed equation for P�n ,m , t�
and thus not a proper master equation because the transitions
A+0 and A−+ are not yet known functions of n and m. If,
however, one uses an approximation analogous to that used
in the simple mean-field approximation, namely, 		pinj


= 		pi

		nj

 and 		nimj

= 		ni

		mj

, that is, u=zx and v
=xy, then

A+0 = azx , �8�

and

A−+ = bxy . �9�

Since x=n /N and y=m /N and z=1−x−y, the transition rates
A�� are now functions or n and m and Eq. �3� becomes a
genuine master equation for P�n ,m�. Another equivalent way
of reaching Eqs. �3�, �6�, �8�, and �9� is presented in the
Appendix. We remark that it is also possible to formulate the
truncation scheme in a local version �32,40�.

The birth-and-death stochastic process defined by Eq. �3�
can be regarded as a random walk in the space �n ,m� as
demonstrated in Fig. 1 where the possible jumps are repre-
sented by arrows. The allowed jumps are �a� �n ,m�→ �n
+1,m�, with probability A+0, �b� �n ,m�→ �n−1,m+1�, with
probability A−+, and �c� �n ,m�→ �n ,m−1� with probability
A0−. Notice the presence of two absorbing states. One of
them is �n ,m�= �0,0� corresponding to the extinction of both
species, which however is unstable and never occurs. The
other is �n ,m�= �N ,0� corresponding to prey repletion and
occurs at sufficient large values of c.

IV. LANGEVIN EQUATIONS

When N is large we may consider the expansion of the
master Eq. �3� in powers of 1 /N. We use an expansion tech-
nique based on a Taylor expansion that has been used suc-
cessfully to reduce birth-and-death master equation to a
Fokker-Planck equation �1,2,39�. In the large N regime the
quantities x=n /N and y=m /N become quasicontinuous vari-
ables that allow us to introduce the probability density
P�x ,y , t�, related to the probability distribution P�n ,m� by
P�x ,y , t�=N2P�n ,m , t�. From Eqs. �6�, �8�, and �9�, the quan-
tities A���n ,m�=A���x ,y� are actually functions of x and y.
Therefore the first term inside the curly brackets in Eq. �3�
can be written as A���x−� /N ,y−� /N�P�x−� /N ,y−� /N , t�.
A Taylor expansion of this term up to second order in 1 /N
leads us to the following Fokker-Planck for the probability
density P�x ,y , t�,

�

�t
P = −

�

�x
�f1P� −

�

�y
�f2P�

+
1

2N
� �2

�x2 �D11P� + 2
�2

�x � y
�D12P� +

�2

�y2 �D22P�� ,

�10�

where

f1�x,y� = azx − bxy, f2�x,y� = bxy − cy , �11�

and

D11�x,y� = azx + bxy, D12�x,y� = − bxy , �12�

D22�x,y� = bxy + cy .

This Fokker-Planck equation is equivalent to the following
Langevin equations:

dx

dt
= f1�x,y� +

1
�N

�1�t� , �13�
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FIG. 1. Transitions of the birth-and-death stochastic process in
the space of prey and predator numbers. The transition to the east
represents a prey birth with rate A+0, to the northwest a prey death
and a simultaneous predator birth with rate A−+, to the south a
predator death with rate A0−. The full circles represent absorbing
states.
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dy

dt
= f2�x,y� +

1
�N

�2�t� , �14�

where �i�t�, with i=1,2, are white Gaussian noise functions
with zero mean obeying the properties

	�i�t�� j�t��
 = Dij�x,y���t − t�� . �15�

The second term on the right-hand side of Eqs. �13� and �14�,
the noise term, decreases as 1 /�N so that the amplitude of
the noisy oscillations in the densities x and y, illustrated in
Fig. 2, decrease also as 1 /�N.

The Langevin equations can be simulated by standard
procedures. Since for sufficiently large N they are equivalent
to the birth-and-death process defined by the master Eq. �3�
we may instead simulate the birth-and-death process. An ex-
ample of phase-forgetting quasicycles and the respective cor-
relation functions obtained from numerical simulations of the
birth-and-death process, defined by the master Eq. �3�, is
shown in Fig. 2.

Let us analyze Eqs. �13� and �14� for large times. Without
noise, the densities x and y approach their asymptotic values
x� and y� given by f1�x� ,y��=0 and f2�x� ,y��=0, which
yields

x� = c/b, y� = a�b − c�/b�a + b� , �16�

valid as long as c	b, corresponding to a state where the
species coexist. Other solutions are �x� ,y��= �1,0�, corre-
sponding to a prey absorbing state, and �x� ,y��= �0,0�, cor-
responding to empty absorbing state or the extinction of both
species.

The stability of the three types of solutions can be inferred
from the eigenvalues of the Jacobian matrix J calculated at
the fixed point �x� ,y�� given by

J = az� − ax� − by� − ax� − bx�

by� − c + bx� � . �17�

When �x� ,y��= �0,0�, the eigenvalues are a and −c so that
this solution is always unstable. The eigenvalues correspond-

ing to the prey absorbing state, �x� ,y��= �1,0�, are −a and
b−c so that it is stable as long as b	c.

Species coexistence, occurring when c	b, is associated
to the fixed point given by Eq. �16� and to the following
Jacobian:

J =  − ac/b − �a + b�c/b
a�b − c�/�a + b� 0

� . �18�

In this case the eigenvalues are the roots of the equation
b
2+ac
+ac�b−c�=0. If ac�4b�b−c� the eigenvalues are
real and negative and the fixed point �x� ,y�� is a node. Oth-
erwise, the eigenvalues are complex and the fixed point is a
focus. Figure 3 shows the eigenvalues as a function of the
parameter c for the case a=b. The change in behavior, from
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FIG. 2. �Color online� Simulations of the birth-and-death stochastic process for the case a=b=0.475 and c=0.05 and N=1000 showing
oscillations of the type phase-forgetting quasicycles. �a� Prey and predator densities as functions of time �with arbitrary origin�. �b� Time
correlation functions against time lag.
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FIG. 3. Real eigenvalues �−�1 and −�2�, real �−� and imagi-
nary ��� parts of the complex eigenvalue as determined by the
simple mean-field approximation. The vertical dotted line at c�

=2 /7=0.2857 indicates the transition from oscillatory to ordinary
behavior.
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a focus to a node, occurs when ac=4b�b−c�, which in the
case a=b occurs at c=2 /7.

V. TIME CORRELATION FUNCTIONS

Without noise the oscillations in densities are either
damped, characterized by a focus, or nonexistent, character-
ized by a node. To get undamped oscillations, such as the
ones illustrated in Fig. 2, we have to take into account the
noise, which activates the otherwise damped oscillations.
One way of showing that the set of Langevin equations in-
deed predicts undamped oscillations is to determine the
asymptotic behavior of the time correlation functions, which
are obtained from a linearized form of the Langevin equa-
tions. For large values of N the noise term will be small so
that, for large times, deviations of x and y from x� and y� will
also be small. The linearization of the Langevin equations
yields

dx

dt
= J11�x − x�� + J12�y − y�� +

1
�N

�1, �19�

dy

dt
= J21�x − x�� + J22�y − y�� +

1
�N

�2, �20�

where the coefficients Jij are the elements of the Jacobian
matrix given by Eq. �18� and the strengths of the noise are

D11 = 2D, D12 = 2D, D22 = − D , �21�

where D=ac�b−c� /b�a+b�.
The time autocorrelation function for prey is defined by

C11�t� = 	�x�tw + t� − x���x�tw� − x��
 , �22�

where tw is the waiting time and t is the time lag. The time
autocorrelation function for predator and the cross-
correlation function are defined in a similar way. The
asymptotic behavior is obtained from the linearized Lange-
vin equations which can be exactly solved. It is straightfor-
ward to show that the solution of the linearized Langevin
equations gives

C11�t� =
D

N
�a1e
1t + a2e
2t� , �23�

where 
1 and 
2 are the eigenvalues of Jacobian matrix �18�.
Therefore if the eigenvalues are complex, the fixed point of
the deterministic part of the Langevin equation is a focus and
the time correlation function is of the type

C11�t� � e−t cos �t , �24�

where − and � are the real and imaginary parts of the
complex eigenvalue. This correlation function characterizes
the phase-forgetting quasicycles with chromatic Gaussian
noise as illustrated in Fig. 2.

In the case of real eigenvalues, the fixed point of the
deterministic part of the Langevin equation is a node and the
asymptotic behavior is given by

C11�t� � e−�t, �25�

where −� is the largest real eigenvalue. This describes a
noncyclic ordinary species coexistence with ordinary Gauss-
ian noise.

The eigenvalues of the Jacobian are shown in Fig. 3 as a
function of the parameter c, for a=b in the interval 0	c
	cc, where cc=1 /3. For these values of the parameters the
system is characterized by an active state where the species
coexist. At c=cc there is a phase transition from an active
state where the species coexist to the prey absorbing state
occurring when cc	c. In the interval 0	c	c� where c�

=2 /7 the two eigenvalues are complex conjugate and the
system exhibits stochastic oscillations of the type phase-
forgetting quasicycles with time correlation functions of type
�24�. In the interval c�	c	cc where cc=1 /3 the eigenval-
ues are real and the system shows ordinary fluctuations with-
out cycles with time correlation functions of type �25�. Inside
the active state there is then a transition from the oscillatory
behavior to nonoscillatory behavior occurring at c=c�. The
imaginary part of the complex eigenvalue, identified as the
frequency of oscillations and regarded as the order parameter
that characterizes the oscillatory state, vanishes continuously
at c=c�.

VI. APPROXIMATION OF THE SECOND ORDER

The birth-and-death stochastic process in two stochastic
variables obtained in Sec. III corresponds to the simplest
stochastic mesoscopic description. It is possible to set up
other mesoscopic descriptions with more stochastic vari-
ables. In this section we set up a mesoscopic description of
the second order in which we take another stochastic variable
in addition to n and m. A relevant new variable to be added
is the number � of nearest-neighbor pairs of predator-prey.
We follow here a procedure similar to that used in the Sec.
III. The joint probability P�n ,m ,� , t� obeys the master equa-
tion

d

dt
P�n,m,�,t� = N �

�=−1

+1

�
�=−1

+1

�
�=−1

+1

�A����n − �,m − �,� − ��

�P�n − �,m − �,� − �,t�

− A����n,m,��P�n,m,�,t�� , �26�

where A����n ,m ,�� are the rate of the transitions �n ,m ,��
→ �n+� ,m+� ,�+�� where the increments �, �, and � take
the values 0 , �1. The nonzero transitions are

A+00 =
1

4�
�

		�pi+� + ni+��piwi

 , �27�

A+0+ =
1

4�
�

		mi+�piwi

 , �28�

A−++ =
1

4�
�

		ni+�niwi

 , �29�

ROLE OF NOISE IN POPULATION DYNAMICS CYCLES PHYSICAL REVIEW E 79, 061128 �2009�

061128-5



A−+− =
1

4�
�

		mi+�niwi

 , �30�

A−+0 =
1

4�
�

		pi+�niwi

 , �31�

A0−− =
1

4�
�

		ni+�miwi

 , �32�

A0−0 =
1

4�
�

		�mi+� + pi+��miwi

 . �33�

The master Eq. �26� is not a closed equation for P�n ,m ,� , t�
since the transition rates A��� are not yet known functions of
n, m, and �. To get a closed equation we will use a mean-
field-like approximation at the level of pair approximation.

Mean-field approximations have been used in the study of
nonequilibrium stochastic lattice-gas models �22,32,40–43�.
They have to do with spatial correlations between sites of the
lattice and can be understood as a truncation scheme used to
reduce the number of equations for the correlations. The
most simple mean field is the one-site approximation in
which all correlations are neglected. For instance, a two-site
correlation p�s0 ,s1� is written as the product p�s0�p�s1�. To
get a better approximation we must include correlations at
least between nearest-neighbor sites. This is done in the so-
called mean-field pair approximation in the following way.
Consider the conditional probability p�s1 ,s2 �s0� of a given
cluster of sites formed by a central site s0 and two nearest
neighbors s1 and s2. This conditional probability is approxi-
mated by p�s1 ,s2 �s0�= p�s1 �s0�p�s2 �s0�, which results in the
following approximated probability of the cluster of sites
p�s1 ,s2 ,s0�= p�s1 ,s0�p�s2 ,s0� / p�s0�.

Using the approximation procedure just explained a cor-
relation of three sites such as 		mjnimk

, where j and k are
distinct nearest neighbors of site i, is written as
		mjni

		nimk

 / 		ni

 and two-site quantities other than
		nimj

 are approximated by the analogous of a simple
mean-field approximation. This procedure leads to the results

A+00 = axz −
3a

4
xyz , �34�

A+0+ =
3a

4
xyz , �35�

A−++ =
3b

4
xv , �36�

A−+− =
b

4
v +

3b

4

v2

x
, �37�

A−+0 =
3b

4
v − xv −

v2

x
� , �38�

A0−− = cv , �39�

A0−0 = c�y − v� . �40�

Since x=n /N, y=m /N, and v=� /N, the rates A��� are now
functions of n, m, and � and Eq. �26� becomes a genuine
master equation for the probability P�n ,m ,� , t�.

The expansion of the master Eq. �26� in powers of 1 /N,
up to first order in 1 /N, gives the following Fokker-Planck
equation for the probability density P�x ,y ,v , t�:

�

�t
P = −

�

�x
�f1P� −

�

�y
�f2P� −

�

�v
�f3P�

+
1

2N
� �2

�x2 �D11P� +
�2

�y2 �D22P� +
�2

�v2 �D33P��
+

1

N
� �2

�x � y
�D12P� +

�2

�x � v
�D13P� +

�2

�y � v
�D23P�� ,

�41�

where

f1�x,y,v� = axz − bv , �42�

f2�x,y,v� = bv − cy , �43�

f3�x,y,v� =
3

4
axyz + bxv − b

v2

x
� − b

4
+ c�v , �44�

and

D11�x,y,v� = axz + bv , �45�

D22�x,y,v� = bv + cy , �46�

D33�x,y,v� =
3

4
axyz + bxv + b

v2

x
� + b

4
+ c�v , �47�

D12�x,y,v� = − bv , �48�

D13�x,y,v� =
3

4
axyz − bxv + b

v2

x
� −

b

4
v , �49�

D23�x,y,v� =
3

4
bxv − b

v2

x
� − b

4
− c�v . �50�

This Fokker-Planck equation is equivalent to the following
set of Langevin equations:

dx

dt
= f1�x,y,v� +

1
�N

�1, �51�

dy

dt
= f2�x,y,v� +

1
�N

�2, �52�

dv
dt

= f3�x,y,v� +
1

�N
�3, �53�

where �i�t�, with i=1, 2, and 3, are white Gaussian noise
functions with zero mean obeying the relations
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	�i�t�� j�t��
 = Dij�x,y,v���t − t�� . �54�

The set of Langevin equations �51�–�53� describes noise os-
cillations similar to those shown in Fig. 2 but the transition
to nonoscillatory behavior is of a distinct and more interest-
ing kind.

Without noise, the densities x, y, and v approach their
asymptotic values x�, y�, and v� given by f1�x� ,y� ,v��=0,
f2�x� ,y� ,v��=0, and f3�x� ,y� ,v��=0. The stability of these
solutions can be inferred from the eigenvalues of the Jaco-
bian matrix J associated to the deterministic part of the
Langevin equations calculated at the fixed point �x� ,y� ,v��.
For a=b the eigenvalues of the Jacobian are shown in Fig. 4
as a function of c. For values of c smaller than cc=0.2, the
system shows an active stationary state. At the critical value
c=cc, determined by the vanishing of the dominant eigen-
value, there is a phase transition to the absorbing state. In the
interval c0	c	cc, where c0=0.1675, the three eigenvalues
of the Jacobian matrix are real. In the interval 0	c	c0,
however, two eigenvalues become complex and the other
remains real. At c=c�, where c�=0.1143, the dominant real
eigenvalue equals the dominant complex eigenvalue, that is
�=.

Inside the active state where the species coexist the sys-
tem displays noise oscillations of the type phase-forgetting
quasicycles in the interval 0	c	c� and nonoscillatory be-
havior in the interval c�	c	cc. At c=c� there is thus a
transition from the oscillatory to nonoscillatory behavior.
The imaginary part of the complex eigenvalue, which is
identified as the frequency of oscillations, may act as the
order parameter characterizing the oscillatory state. In this
case it jumps from a nonzero to a zero value. This discon-
tinuous behavior is in better accordance with numerical
simulations than the continuous behavior obtained from the
first-order approximation. Indeed, a discontinuous behavior
in the frequency of oscillations has been found for the
present stochastic lattice-gas model by numerical simulations
�44�.

VII. DISCUSSIONS AND CONCLUSIONS

We have formulated a consistent and systematic proce-
dure to derive Langevin equations describing undamped os-
cillations from stochastic lattice-gas models for predator-
prey systems. The Langevin equations for the population
densities are such that the noise decreases as one increases
the size of the system. Without noise the oscillations are
always damped. The noise plays then the crucial role of con-
verting the damped into undamped oscillations. The un-
damped oscillations are characterized by time correlation
functions whose asymptotic behavior is determined by the
eigenvalues of the Jacobian associated to the deterministic
part of the Langevin equations. The undamped oscillations of
the type phase-forgetting quasicycles occur when the domi-
nant eigenvalue possesses an imaginary part, identified with
the frequency of the oscillations and regarded as the order
parameter characterizing the oscillatory state.

According to the conceptual framework assumed here,
phase-forgetting quasicycles or local oscillations in densities
will emerge when the deterministic part of the Langevin
equations presents a stable fixed point that is a focus. If the
deterministic part predicted a limit cycle in the place of a
stable focus fixed point this would result in the phase-
remembering quasicycles or global oscillations in densities,
which would then be observed even in the absence of noise.
However, this situation did not happen in any of the two
approximations used here.

We remark finally that the dominant eigenvalue of the
Jacobian related to the deterministic part of the Langevin
equations is to be identified as the dominant eigenvalue of
the evolution operator associated to the master equation of
the original stochastic lattice-gas model. More properly with
the subdominant eigenvalue �or the eigenvalue “gap”� be-
cause the dominant eigenvalue of an evolution operator is
identically zero. The undamped time oscillations in the origi-
nal stochastic lattice-gas model emerge then if the eigenvalue
gap is complex, which is possible in irreversible but not in
reversible stochastic dynamics.

APPENDIX

The master Eq. �2� can be written in the following equiva-
lent form:

d

dt
	F���
 = �

i

	�F��i� − F����wi���
 , �A1�

where F��� is any state function and the averages are deter-
mined using the probability distribution P�� , t�. Let us apply
this formula to a particular type of state function F��� that
depends on � only through n=�ini and m=�imi. With the
help of the projection variables pi, ni, and mi, Eq. �A1� can
be written as

d

dt
	F�n,m�
 = �

i

	�F�n + 1,m� − F�n,m��piwi���


+ �
i

	�F�n − 1,m + 1� − F�n,m��niwi���


+ �
i

	�F�n,m − 1� − F�n,m��miwi���
 .

�A2�
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FIG. 4. Real eigenvalues �−�1, −�2, and −�3�, real �−� and
imaginary ��� parts of the complex eigenvalue as determined by the
mean-field approximation for the case a=b. The vertical dotted line
at c�=0.1143 indicates the transition from oscillatory to ordinary
behavior.
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Next we use an approximation that replaces the summations

�
i

piwi���, �
i

niwi���, �
i

miwi��� , �A3�

by quantities that depend on � only through n=�ini and m
=�imi. Notice that the last quantity is already of this form
because it equals c�imi=cm. Denoting these quantities re-
spectively by

NA+0�n,m�, NA−+�n,m�, NA0−�n,m� , �A4�

we get results �4�–�6� and Eq. �A2� can be written as

d

dt
	F�n,m�
 = N�

�,�
	�F�n + �,m + �� − F�n,m��A���n,m�
 .

�A5�

Since now all quantities inside the brackets depend only on n
and m we may interpret the averages as averages that are
determined by means of the probability distribution
P�n ,m , t� and Eq. �A5� becomes equivalent to the master Eq.
�3�. The same type of reasoning can be used to reach the
master equation related to the approximation of the second
order.
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